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Foundations of Swarm Intelligence:
From Principles to Practice

Mark Fleischer
Institute for Systems Research

University of Maryland
College Park, Maryland 20742

Abstract— Swarm Intelligence (SI) is a relatively new paradigm
being applied in a host of research settings to improve the
management and control of large numbers of interacting entities
such as communication, computer and sensor networks, satellite
constellations and more. Attempts to take advantage of this
paradigm and mimic the behavior of insect swarms however often
lead to many different implementations of SI. The rather vague
notions of what constitutes self-organized behavior lead to rather
ad hoc approaches that make it difficult to ascertain just what SI
is, assess its true potential and more fully take advantage of it.
This article provides a set of general principles for SI research
and development. A precise definition ofself-organized behavior
is described and provides the basis for a more axiomatic and
logical approach to research and development as opposed to the
more prevalent ad hoc approach in using SI concepts.

The concept of Pareto optimality is utilized to capture the
notions of efficiency and adaptability. A new concept,Scale
Invariant Pareto Optimality is described and entails symmetry
relationships and scale invariance where Pareto optimality is
preserved under changes in system states. This provides a
mathematical way to describe efficient tradeoffs of efficiency
between different scales and further, mathematically captures
the notion of the graceful degradation of performance so often
sought in complex systems.

Index Terms— swarm intelligence, self-organization, multiob-
jective optimization, Pareto optima, finite-state machines

I. I NTRODUCTION

T ODAY’S communications networks have become enor-
mously complex systems. New technologies from sen-

sor networks, web-enabled PDAs, remote surgery systems
to constellations of orbiting satellites all require enormous
numbers of communicating and interacting entities. These
entities must work together harmoniously to be effective. As
the numbers of these interacting entities increases, ensuring
their efficient operation becomes increasingly difficult. Indeed,
for the past three decades this growth in general has approx-
imately doubled every 18 months [1, p.32]. New paradigms
of modern warfare also indicate an accelerated growth in the
numbers of interacting systems. Amidst this growth, there
is a growing consensus among experts that current network
management approaches will be insufficient to handle the
level of complexity that is envisioned1 [2]. Consequently, new
approaches for network management and control in complex
systems are needed.

1As stated by the National Research Council in a report on countering
terrorism: “Research is also needed for self-adaptive networks that can
reconfigure themselves in response to damage and changes in demand, and
that can degrade gracefully.”[2]

One promising approach is based on what is often referred
to asSwarm Intelligence (SI). The term SI has come to repre-
sent the idea that it is possible to control and manage complex
systems of interacting entities even though the interactions
between and among the entities being controlled is, in some
sense, minimal. This notion therefore lends itself to forms of
distributed control that may be much more efficient, scalable
and effective for large, complex systems.

The underlying features of SI are based on observations
of social insects. Ant colonies and beehives, for example,
have the interesting property that large numbers of them
seem to conduct their affairs in a very organized way with
seemingly purposeful behavior that enhances their collective
survival. Surprisingly and paradoxically, these insects seem to
utilize very simple rules of interaction. This phenomenon is
very similar to those addressed in other domains of inquiry
involving complexity such as cellular automata and the study
of chaos [3], [4], [5]. These areas along with SI have perplexed
a large number of scientists for many years [6]. How is it
that “swarms” of creatures with relatively low brain power
and communications capabilities can engage is what is often
termed “emergent behavior” reflective of some “collective
intelligence” [6, p.6] —behavior that seems to exhibit a more
global purpose?

Unfortunately, there is no widely agreed upon definition
of what SI is or how it should or could be mathematically
defined or characterized. Many terms have been associated
with SI such asemergent behavior, self-organized behavior,
collective intelligence, and the like and have been used in a
variety of contexts and associated with a host of applications
[7], [8], [9], but these terms also suffer from vague definitions
or descriptions. There is no general, mathematically oriented
description that ties all of these concepts together.

The lack of precise definitions and, hence, theoretical foun-
dations, poses a number of significant problems and even
causes confusion. The lack of precise definitions is the least of
the problems—this confusion also entails missed opportunities
as well. All these different descriptions and implementations
muddy the waters of how to productively utilize SI concepts.
Without a clear understanding of what SI is and how and why
it arises, it is very difficult to envision how to take advantage
of its true potential.

The remedy for this apparent confusion comes from new
perspectives that illuminates thefundamental properties of
SI. This article seeks to do just that by articulating some
useful ideas based on perspectives from evolution, notions
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of efficiency, and adaptability coupled with a more formal
definition of self-organized behavior.

This article formulates three strategic or foundational frame-
works from which to build a successful theory of SI and which
provide guidelines for how to implement SI concepts. These
frameworks are based on the development of the successful
theories pertaining to thesimulated annealing (SA) algorithm.
The application of these frameworks to SI may provide the
necessary yet still missing ingredients for developing a better
understanding of SI. This may lead to entirely new ways of
viewing and understanding this paradigm and ultimately allow
for more practical implementation schemes.

The most important part of this foundational triad, and a
necessary ingredient for developing a solid theoretical founda-
tion for SI, is the articulation of somefirst principles based on
the relevant laws of nature and their implications. This serves
as a guide that governs and constrains the articulation of the
other important components in developing a useful theory. For
SI, these first principles are based on the laws of evolution and
natural selection. As the reader will discover, its reasonable
implications suggest a more precise and mathematically useful
definition of self-organized behavior—the evolution of system
states along a Pareto optimal frontier.

The second component of this triad is the articulation of
an appropriatedynamical framework, a way of characterizing
system dynamics that is a consequence of or constrained
by the first principles. The dynamical framework suggested
here is based on a new concept in the context of SI—
Scale Invariant Pareto Optimality (SIPO). SIPO is a powerful
concept that captures notions of symmetry and scale invari-
ance and can address the issues of how swarms of entities
communicate, modify their behavior, andadapt to changing
environmental conditions—one of the hallmarks of SI. This
dynamical framework also provides a set of rules that, in
effect, imposes constraints on a system’s dynamics so as to
maintain consistency with the implications of the relevant laws
of nature as articulated in the first principles.

Finally, the third component of this triad is the articu-
lation of an appropriateproblem framework. This provides
useful ways to abstract these ideas and allows them to be
implemented. It provides a concrete way of defining problems
that help to further narrow the issues and focus research and
development efforts. This article describes a general test-bed
approach using the concept ofswarming finite-state machine
(SFSM) models.

Together, this triad of frameworks, ormeta-formalism,
present a unified scheme for approaching the research prob-
lems and investigating ways to implement SI concepts. It
addresses how swarms of entities must communicate and
modify their behavior in response to information from other
entities and their environment for there to exist the emergent,
self-organized behavior known as “swarm intelligence”. This
set of perspectives leads to a more precise mathematical
definition of SI, describes ways to more fully take advantage
of this paradigm and, constructively address any of its inherent
limitations.

The rest of this article is organized as follows: Section
II provides more detail on the current research environment

regarding SI and its myriad of applications. Section III de-
scribes why the three formalisms described above provide
a sound basis for developing the theoretical foundations of
SI by describing similarities to thede facto frameworks
associated with simulated annealing. Sections III-A through
III-C describe the three frameworks on a conceptual level.
Finally, Section IV provides concluding remarks.

II. BACKGROUND: THE SWARM INTELLIGENCE PARADIGM

A. Observations of Social Insects

Observations of social insects such as ants and ant colonies
provide a great deal of insight into their behavior and SI in
general. Ants and ant colonies have several ways of solving
different but related problems. The main mechanism for solv-
ing them is through the use of chemical substances known as
pheromones which have a scent that decays over time through
the process of evaporation [6, p. 26]. These pheromones form
the basis of what amounts to a clever, and apparently simple,
communications and information storage and retrieval system.
Since pheromone strength or intensity decays over time, it also
provides a very simple information processing mechanism that
can implement forms of positive and negative feedback [6, pp.
9-10, 41] andreinforcement learning mechanisms [6, p.96].
This “processing” capability is illustrated in the simplicity of
how ants utilize and respond to pheromones.

As an example, consider how ants actually solve shortest
path problems. Their motivation for solving these problems
stems from their need to find sources of food. Efficiency
dictates that they find sources closest to their colonies. Ants
(many ants) first set out in search of a food source by randomly
choosing (apparently randomly) several different paths. Along
the way they leave traces of pheromone [6, p. 42]. Once ants
find a food source, they retrace their path back to their colony
(and in so doing inform other ants in the colony) by following
their scent back to their point of origin. Since many ants go
out from their colony in search of food, the ants that return
first are presumably those that have found the food source
closest to the colony or at least have found a source that is in
some sense more accessible. In this way, an ant colony can
identify the shortest or “best” path to the food source [6].

The cleverness and simplicity of this scheme is highlighted
when this process is examined from what one could conceive
of as the ants’ perspective—they simply follow the path with
the strongest scent (or so it seems). The shortest path will
have the strongest scent because less time has elapsed between
when the ants set out in search of food and when they arrive
back at the colony, hence there is less time for the pheromone
to evaporate. This leads more ants to go along this path further
strengthening the pheromone trail and thereby reinforcing the
shortest path to the food source and so exhibits a form of
reinforcement learning [6], [10], [11].

But this simple method of reinforcement or positive feed-
back also exhibits important characteristics of efficient group
behavior. If, for instance, the shortest path is somehow ob-
structed, then the second best shortest path will, at some later
point in time, have the strongest pheromone, hence will induce
ants to traverse it thereby strengthening this alternate path.
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Thus, the decay in the pheromone level leads toredundancy,
robustness andadaptivity, i.e., what some describe asemergent
behavior [6].

Many optimization algorithms attempt to imaginatively cap-
ture some notion of SI. Indeed, many difficult optimization
problems have been solved by so-calledant algorithms such
as the Traveling Salesman Problem, the Quadratic Assignment
Problem and otherNP-hard optimization problems (see [6] for
a large number of examples and citations). These algorithms
generally utilize some analogue of pheromone or some simple
stigmergic signalling mechanism. AntNet [12] for example,
uses reinforcement learning to increase the probabilities of
using certain routes in a routing algorithm. The probability
value is used as an analogue to pheromone. Another example
is in [13] which uses a similar update mechanism to control
unmanned aerial vehicles. These different approaches all try
to take advantage of how social insects seem to function.
These attempts to implement some SI characteristic however
often are forced to creatively sidestep the concept of self-
organization and its implications.

B. The Mystery of Self-Organization

Although much has been learned from observations of these
social insects, there is no widely agreed upon definition of
what constitutes SI. Indeed, the termSI is bandied about so
often and in such a wide variety of contexts that it causes
confusion leading to many different interpretations and im-
plementations for various problems. Although many of these
implementations reflect some notion of SI, they often entail
other paradigms as indicated above such asreinforcement
learning [11], [14] and stigmergy which refers to complex
indirect interactions based on simple signalling systems [6,
p.14]. Where does one paradigm end and the other begin?
Still, other research seems to freely use the term SI when there
simply are large numbers of interacting entities (see [15] for
a complete discussion on competing paradigms). Does that
alone suffice to describe or define SI? Is it merely a way of
somehow taking advantage of parallel computing methods?

Notwithstanding the many different descriptions offered by
many researchers, the main features of SI seem to involve
forms of limited or minimal communications and/or inter-
actions, large numbers of interacting entities with limited
reach, and some globally efficient, emergent orself-organized
behavior [6, p.9]. Bonabeauet al. [6, p.9-11] suggests that
the central features of SI are based on the manifestation of
self-organization that arise from the interplay of four basic
ingredients: 1) forms of positive feedback, 2) forms of negative
feedback, 3) theamplification of fluctuations that give rise
to structures, and finally 4) multiple interactions of multiple
entities.

But even this characterization provides very little insight
into what SI is except in very descriptive terms. For example,
it does not fully explain in a unifying way why or how
pheromones evolved in the way they did, or why they should
have the evaporative properties they have, or why they have
their chemical makeup, or how ants can somehow distinguish
among different types of pheromone (presumably in order to

identify ants from other colonies) [16, p.156]. Pheromones are
complex chemical signalling systems, yet most of the research
that deals with them or models their effects use the concept
in very limited ways,e.g., as a scalar in ant algorithms [14],
[17] as opposed to a more complex scheme represented by
vectors. Although, as we shall see, even simple scalars can
possess enough information related to a measure of efficiency,
pheromones are likely to have more complicated properties
than their mere intensity [6]. Indeed, Wiener [16] in his
ground-breaking bookCybernetics emphasizes the importance
of intercommunication among the entities in question:

How then does the beehive act in unison, and at
that in a very variable, adapted, organized unison?
Obviously, the secret is in the intercommunication
of its members. . . This intercommunication can vary
greatly in complexity and content. . . the value of
a simple stimulus, such as an odor, for conveying
information depends not only on the information
conveyed by the stimulus itself but the whole ner-
vous constitution of the sender and the receiver of
stimulus as well [16, p.156-7].

However SI is described, one of its central characterizations
is that ofself-organization. But this also begs the question of
what constitutes SI because there is no clear understanding of
what self-organization or emergent behavior is! These terms
have been around for some time and their definitions have
been and probably will continue to be debated for some time.

Serraet al. describes the concept of self-organization gen-
erally as “highly organized behaviour even in the absence of
a pre-ordained design.” [18, p.1] (but what is ‘organized’?).
They go on to further describe examples such as the reso-
nance phenomenon in lasers, and in cellular automata where
“unexpected and complex behaviours [] can be considered as
self-organized.” [18, p.2].

Earlier, Prigogine2 et al. [5] described self-organization in
chemical reactions and thermodynamic contexts. His notion
is quite enlightening and emphasizes the element offluctua-
tions in far-from-equilibrium system states. Non-linear system
changes, fluctuations as he refers to them, due to either
random events or chaotic dynamics, are then amplified by
positive feedback mechanisms. This results in structures that
emerge spontaneously which often are presented as examples
of self-organization. It is interesting that Prigogine provides an
example of SI based on the clustering behavior of termites in
constructing termite nests [5, p.181-186]. See also [6, p.207-
234]. Even earlier, Wiener [16] used the term in describing
the brain waves of humans. See [16, Chap. 10: Brain Waves
and Self-Organizing Systems]. Again, the notion of what self-
organization is remains unclear. Is it merely some structure or
pattern? And if so, how is one to distinguish it from merely
random effects?

What is needed to truly take advantage of SI is more than the
mere descriptions of the attributes of SI and self-organization.
Something amenable to formal mathematical definition would
be quite valuable. This article offers a new and potentially

2Prigogine won the Nobel Prize in 1977 for his work on the thermodynam-
ics of non-equilibrium system.
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useful working definition of emergent or self-organized behav-
ior for SI based on the imperatives of evolution and natural
selection (as opposed to the imperatives of thermodynamics
and irreversibility that elicited Prigogine’s definition [5]). The
concept of self-organization therefore plays a central role in
the development of the foundational principles of SI.

These principles are founded on the notion that self-
organized behavior of the type observed in entities subject to
the laws of evolution involves forms of efficiency in resource
allocation. It emphasizes the importance ofsignals as mecha-
nisms of change in system states subject to the imperatives of
the evolutionary pressures of natural selection. It is important
to recognize that the response of insect swarms to external
stimuli is governed by processing systems that have been
heavily influenced and affected by the forces of evolution. This
allows consideration of a much richer spectrum of behaviors,
both simple and complex, than those implied by the mere
application of positive and negative feedback mechanisms to
simple signals. In fact, the type of self-organization described
here can be framed asa form of symmetry in that changes in
the system’s behavior and operating points nonetheless leave
unchanged certain attributes associated with these operating
points, namely, their Pareto optimality [19]. In short, a novel
definition of self-organization presented here issystem behav-
ior that maintains its operating points on or near a Pareto
optimal frontier. This notion of efficiency constitutes a central
feature of the foundational principles for SI and is described
in greater detail in the next section.

III. T HE IMPORTANCE OFBASIC PRINCIPLES

Developing a viable set of basic principles underpinning
SI concepts is essential for successful implementations. The
principles described here have a certain credibility and hence
viability because they are based on how other successful
theories appear to have been developed. This requires some
discernment and creative articulation of the main features of
how these other theories were, in fact, developed and how
these features could be applied in the case of SI. The simulated
annealing (SA) algorithm is a good example of this process
and provides clues on how to articulate the corresponding
components of the central principles underlying SI.

A great deal of theoretical results on SA have been pub-
lished in many papers and books (seee.g., [20], [21], [22],
[23]). But this algorithm was not developed or analyzed in a
vacuum. Its development was, in fact, based on the conflu-
ence of certain factors. Three main factors or components of
the research evolution are discernable. The first component
consists of a set offirst principles based on therelevant
laws of nature and their implications. The second component
is an appropriatedynamical framework. Finally, the third
component is an appropriateproblem framework. These three
components form the core of what can be referred to as a set
of foundational frameworks. To see how these components
provide guidance in developing a viable research strategy for
SI, an understanding of how they worked together in the case
of SA is helpful.

In SA, the first principles were based on the laws of ther-
modynamics. The most salient implication of this law was that

the entropy of a thermodynamic system, the randomness of its
states, tends to its maximum value at any given temperature.
Metropolis [24] utilized this idea in developing a method
for simulating the evolution of a complex thermodynamic
system. The underlying law of thermodynamics was manifest
in the objective function of a non-linear program (NLP). The
objective of this NLP was to maximize the entropy of a
stationary Markov chain subject to certain constraints (such
as the the constraint that expected energy level is proportional
to temperature) [21].

The solution of this NLP lead to an expression for the
stationary probability distribution (the Boltzmann Distribution)
of each system state [21]. Thus, the implication of the first
principles was the expression of the Boltzmann Distribution.
What remained was to somehow develop an appropriate
mechanism that described how this thermodynamic system
changes from one state to another while at the same time
remaining consistent with the maximization of entropy,i.e.,
the Boltzmann Distribution, as dictated by the fundamental
laws of thermodynamics.

Thus, in addition to this fundamental law, adynamical
framework was necessary to address the problem of how to
model a system that undergoes some type of change. The
well-known mathematical framework of Markov chains and its
global and detailed balance equations provided those necessary
elements that mathematically describe the stochastic nature of
the system as it changes from one state to another while still
obeying the fundamental laws of thermodynamics [20], [22],
[24]. It was this utilization of the detailed and global balance
equations that ultimately lead Metropoliset al. to his now
famousMetropolis Acceptance Criterion, the main result of
Metropolis’ contribution. In effect, Metropolis ‘engineered’ a
transition probability to fit within the framework of global and
detailed balance equations given the stationary probability,i.e.,
the Boltzmann Distribution.

Once these transition probabilities were defined, the math-
ematical description of how a large, thermodynamic system
evolves from one state to another in a computer simulation
was complete [24]. Once this method of simulating a thermo-
dynamic system was in place (in 1953), the idea of reducing
temperature slowly to “anneal”, conceived by Kirkpatrick [25]
some 30 years later, was the final element that lead to the SA
algorithm. This algorithm has since been fully mathematically
described and analyzed by a host of researchers3 (see [20],
[22], [24], [25]) using variouscombinatorial optimization
problems (COPs) as theproblem framework—a general way of
characterizing a whole host of discrete optimization problems.
Thus, the dynamical and problem frameworks provided the
mathematical constraints and research focus in a way that was
consistent with the laws of thermodynamics.

To summarize how these three components of the founda-
tional principles, the meta-formalism, describes the evolution

3Although the algorithm seems to have been fully analyzed, this proposer
believes there are still a number of fundamental theoretical elements that
await discovery. Seee.g., Fleischer [23] for a description of scale invariant
properties of the SA algorithm. These properties illustrate some potentially
important symmetries in SA and may play a role in research involving a group
theoretic approach for modelling SI.
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of SA theory, the first principles were based on thermody-
namics manifest as the maximization of the entropy in an
NLP that lead to the definition of the Boltzmann Distri-
bution. The dynamical framework was based on the global
and detailed balance equations of Markov chains which lead
to the Metropolis Acceptance Criterion and the transition
probabilities in SA. Finally, the problem framework was based
on COPs which permitted the application of the ideas onto test
bed problems for experimentation and analysis. A successful
and useful set of formalisms can therefore be modelled on this
developmental process4 hence ought to involve first principles
based on fundamental laws, an appropriate dynamical frame-
work, and an appropriate problem framework. Each of these
three components can be recast to within the context of SI.
This is described in more detail in the next three sections.

A. First Principles: The Laws of Evolution

Any successful theory requires some reasonable and widely
accepted assumptions on which the theory is based. Because
the SI paradigm is based on observations of social insects,
i.e., living creatures, the first principles ought to based on,
involve, or at least be consistent with, the laws of evolution
and its implications. Basically, this theory states that species
evolve over generations constantly improving their fitness to
survive through the process of natural selection and genetic
mutation. Indeed, this theory forms the basis of GAs and its
associated theoretical results [27], [26]. But this theoretical
statement by itself seems insufficient to establish foundational
principles for SI. Somereasonable implications of this theory
are needed.

One reasonable and important implication of the theory
of evolution as it relates to swarms of insects is that it
selects out those systems that exhibitefficient behavior on
many scales. This notion of efficiency is not only reasonable,
but is also based on observations of social insects and how
they adapt to changing environmental conditions (see [26]).
Indeed, it seems basic that an efficient allocation and use of
resources provides a distinct survival value to any species.
Thus, a reasonable implication of evolution regarding the
behavior of social insects is that it lead to behaviors that are,
in some measure,efficient. These notions of efficiency and
adaptability have an important mathematical formalism based
on the concept ofPareto optimality.

1) Efficiency Via Pareto Optimality: Optimization problems
are ubiquitous in the real world and social insects must also
deal with a variety of them if they are to survive. Certainly,
the efficient allocation of resources present problems where
some goal or objective must be maintained or achieved. Such
goals or objectives are often mathematically modelled using
objective functions, functions of decision variables or parame-
ters that produce a scalar value that must be either minimized
or maximized. The challenge presented in these often difficult
problems is to find the values of those parameters that either
minimize or maximize,i.e., optimize, the objective function
value subject to some constraints on the decision variables.

4We believe that other theories such as those associated with genetic
algorithms (GAs) offer a similar developmental model.

Most complex systems, however, haveseveral objectives
that must be considered when assessing overall system per-
formance. Operations of these systems sometimes leads to
conflicting objectives where one objective must beefficiently
“traded off” for another. In thesemulti-objective optimization
problems (MOPs) system efficiency in a mathematical sense
is often based on the definition ofPareto optimality–a well-
established way of characterizing aset of optimal solutions
when several objective functions are involved (seee.g., [28]
and the citations therein).

In this perspective, each operating point or vector of deci-
sion variables (operational parameters) produces several objec-
tive function values corresponding to a single point in objective
function space (this implies a vector of objective function
values). APareto optimum corresponds to a point in objective
function space with the property that when it is compared to
any other feasible point in objective function space, at least
one objective function value (vector component) is superior to
the corresponding objective function value (vector component)
of this other point. Pareto optima therefore constitute a special
subset of points in objective function space that lie along
what is referred to as thePareto optimal frontier–the set
of points that together dominate (are superior to) all other
points in objective function space [29]. See also [30] and [31]
for descriptions of multi-objective GAs (their intriguing titles
notwithstanding do not encompass the ideas put forth here on
SI).

f2

f1

Fig. 1. The Pareto Optimal Frontier

An important characteristic of Pareto optima, this frontier
of points, is that they correspond to operating points where
the improvement of one objective function value comes only
at the cost of worsening some other objective function value—
trading off one for another. Figure 1 illustrates this set of
points in objective function space by the openO’s where each
operational decision vector produces two objective function
values f1 and f2 that are minimized. It is along this set
of points that operational decisions must be restricted if
operational efficiency is to be maintained. It is easy to see
that the Pareto frontier dominates (is superior to) the other
points in this 2-dimensional objective function space.

Effective methods for determining several Pareto optima can
be quite valuable for enhancing the survival value of a species
(or managing a complex system) because it enablesadaptive
behavior. This allows the possibility of efficient operations
when there are changes in the relative utility of the several
objectives or when one objective must be restricted to a certain
range of values. Under such circumstances, the system can be
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moved along the Pareto frontier from one Pareto optimum to
another thereby maintaining operational efficiency. Thus, if in
an ant colony a path to a food source becomes congested, then
other routes must be utilized. Although the distances to food
sources are generally minimized as is the level of congestion,
these often conflicting objectives can be efficiently traded off
when the shortest distance is sacrificed to lessen the level of
congestion [6].

To summarize this first component of the foundational
principles of SI, the first principles and its implications sug-
gest that both subsystems and system should behave in a
manner consistent with Pareto optimality. What remains is to
characterizePareto optimal behavior in a context reflective
of SI. It is noteworthy, and somewhat surprising, that these
ideas pertaining to Pareto optimality and self-organization have
apparently not been pursued or even articulated by others in the
context of SI research! Seee.g., the very complete books on
SI such as [6]. Assuming that natural selection pressures have
imposed behaviors leading to efficient, adaptable,i.e., Pareto
optimal behavior, the question of how this is achieved in social
insect societies must be addressed. What are the mechanisms
that social insects use to solve what amount to MOPs with the
limited forms of communication they seem to have?

It may be that notions of scale are involved. Indeed, the
concept ofstigmergy suggests that what has been regarded as
collective intelligence or emergent behavior on a large scale
is effected by decisions on a smaller scale [6, p.14]. But
how is such a relationship among different scales possible
when decisions affecting the local environment are based on
apparentlysimple information? How can system change be
mathematically described in a way consistent with movement
along the Pareto optimal frontier? More significant however is
the notion ofefficiently trading off the efficiencies on one scale
with efficiencies on another scale. Addressing these issues
mathematically is the purpose of the dynamical framework
described below.

B. The Dynamical Framework: Promoting Adaptability

The purpose of the dynamical framework is to provide
guidelines for how to mathematically model the dynamics of
the system in a way that is consistent with the first principles
and faithfully reflects the desired phenomenon. Its articulation
provides the necessary research and development focus for
describing system dynamics. This allowsspecific questions to
be asked that lead to specific tests, mathematical constraints,
and the like. In essence, it facilitates theengineering of the
dynamical rules that, in this case, lead to Pareto optimal
behavior. It is the essential feature that allows this type of
research to proceed.

For SI, the dynamical framework must be based on the
two intertwined principle features of SI—its emergent or self-
organized behavior, and the minimal information process-
ing and communications capabilities of the entities involved.
These two rather vague notions must somehow lead to more
well-defined properties and characterizations. The preceding
section suggests that the emergent behavior can be charac-
terized by Pareto optimal operating points in some decision

space. The additional requirement that such efficient behavior
arises from limited communication and information, in effect,
imposes some scaling aspects. These are addressed by the
Scale Invariant Pareto Optimality (SIPO) concept described
in the next section.

1) Scale Invariant Pareto Optimality: The SIPO concept
stems from a belief that evolution has lead to behaviors of
social insects that promote the entire species. Somehow over
the eons of evolution, insects societies have developed rules
of conduct that are biologically driven and lead to efficient
management of their environment and resources [6, p.30]. Yet,
given their apparently limited capacity for communication and
information processing, it seems rather mysterious that in spite
of these limitations, their behaviors seem almost guided by an
invisible hand5 that somehow efficiently manages an entire
colony’s resources! How is this possible? As stated earlier,
system movement along the Pareto optimal frontier lends
itself to adaptable and efficient behavior thereby increasing
the survival value of these social insects. The heart of the
matter in SI therefore becomes:

How can an entire system be moved along the Pareto
optimal frontier when the entities that comprise the
system have only limited information available to
them on which to base their own behaviors and
where their behaviors have only limited effects on
their environment and other entities?

The SIPO concept attempts to answer these types of
questions. Simply put, it is a way of characterizing Pareto
optimal solutions on many scales and thus reflects efficient
and adaptable system behaviors on many scales. It provides
a basis for defining properties of systems that are reasonable
and have been observed in social insect colonies. Evolution can
be seen as imposing not just behaviors that enhance survival
of individual entities, but also of groups or societies of these
entities [6, p.30-1]. Thus, while ants must manage their own
survival, they also derive distinct advantages from participating
in a colony. Indeed, scientists have observed behaviors in ant
colonies that in many respects is efficient on several different
scales involving sub-societies or sub-colonies (see [6, p. 209]
for a discussion on nest modularity). There are divisions of
labor, aspects of specialization and such that contribute to
the overall survival value of an entire colony [6, p.2]. This
interdependency seems to promote their collective, and hence
individual, survival.

Since the SIPO concept revolves around the concept of
Pareto optima6 it is necessary to fully characterize its mathe-
matical attributes. So far, only its definition has been described.
The next few paragraphs describe another important aspect of
Pareto optima.

5Their economies like those of humans may indeed be guided by Adam’s
Smith’s invisible hand, i.e., swarm intelligence!

6It is worth noting that this description of SIPO concepts seems, on the
surface, to be similar to those articulated by others. Menczer [31]e.g.,
describes an evolutionary algorithm that seeks to determine Pareto optima and
has some scaling properties. But this article does not describe the adaptable
behavior of entities in terms of movement along a Pareto frontier. Coello
et al. [30] also provides an intriguing title, but their paper also deals with
evolutionary optimization schemes for solving MOPs and does not address
issues pertaining to SI.
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a) The Measure of Pareto Optima: A rather intuitive
yet surprisingly little known aspect of Pareto optima is its
measure. This measure is based on the size of the set of
points in objective function space that are dominated by the
Pareto optimal frontier—in essence a Lebesgue measure or
hypervolume. Zitzler [32] was apparently the first to publish
this idea in a brief three sentence description.7 Fleischer [28]
extended this idea and described a set function that maps a
set of points in objective function space to a scalar value,
the Lebesgue measure, and formally proved that this scalar
achieves its maximum value if and only if its arguments are
Pareto optima. Fleischer also defined an efficient (polynomial)
algorithm for calculating this scalar for an arbitrary number
of dimensions (objective functions).

Fig. 2. The hypervolume of Pareto optima.

This hypervolume is illustrated by the shaded region in
Figure 2 for two minimizing objective functionsf1 and f2

(see [29] for more complicated illustrations in 3 dimensional
space). The dotted lines are upper bounds onf1 andf2 while
the black dots correspond to feasible points in the underlying
decision space. Because this set function produces a scalar,
it can be used as an objective function in an optimization
algorithm such as SA. The proof that if this hypervolume is
maximized then its arguments are Pareto optima8 implies that
its use in SA can induce it to converge in probability to the
Pareto optima!9

One important aspect of this measure is that itquantifies
efficiency, i.e., changes in the overall efficiency can be mathe-
matically captured by a changes in the scalar hypervolume and
depicted by a receding or expanding Pareto optimal frontier
(see below for a further discussion on efficiency tradeoffs).
This measure and its potential roles in SI are described in the
next sections.

b) Subsystem Interactions and Constraints on Objective
Functions: The SIPO property suggests that local efficiency

7This idea was independently formulated by the author who later discovered
that Zitzler had already described it in a brief three sentence passage.
The author was therefore compelled to provide a formal proof and some
algorithmic extensions.

8This direction of proof of theif and only if implications is much more
difficult, but is necessary in order to justify its potential use as an objective
function in a metaheuristic such as SA where the mechanism of search
is crucially dependent on the objective function value,e.g., the Metropolis
Acceptance Criterion the goal of which is to improve the objective function
value.

9The author is not aware of any other multi-objective optimization scheme
that theoretically converges in probability to Pareto optima.

may often be sufficient forsystem-wide efficiency. Articulating
and applying this concept to systems of entities therefore
imposes constraints on how subsystems can interact,using
simple forms of information, so that a system, be it an ant
colony, a swarm of chemical sensors, or a network of computer
systems, operates on, or close to, the Pareto optimal frontier on
both local and global scales. How this can be accomplished is
non-trivial because several identical subsystems may operate
on different Pareto optima in terms of local performance
metrics.

Consider the following simple example where two, identical
subsystems have operating points (vectors of parameters or
decision variables) on one of two local Pareto optimax1 and
x2. These two operating points lead to points in objective
function spacep1 = (f(x1), g(x1)) ≡ (f1, g1) and

p2 = (f(x2), g(x2)) ≡ (f2, g2) for two local objective
functionsf and g, where, for purposes here, both are min-
imized. Let functionsF and G be global objective func-
tions each taking two arguments, one from each subsystem.
Assuming the order of arguments makes no difference in
these functions, there are three distinct ways in which these
two subsystems can operate on local Pareto optima: two
ways where both subsystems operate on the same point in
local objective function space,i.e., (F (x1,x1), G(x1,x1))
and (F (x2,x2), G(x2,x2)) and one way in which the
subsystems operate on different local Pareto optima,i.e.,
(F (x1,x2), G(x1,x2)). How should the global objective func-
tionsF andG be defined in terms of local objective functions
so that all three combinations of local Pareto optima map into
the set of global Pareto optima?

More generally, under what circumstances do differentcom-
binations of local Pareto optima associated with subsystems
yield a global Pareto optimum? Put another way, what is the
form of objective functions that allow mappings of Pareto op-
timal points on the sub-system level, to Pareto optimal points
on the system-wide level? This scaling from the sub-system
level to a system-wide level may therefore impose certain
additivity properties or exponential forms in the measures of
performance and presents separability issues. For example,
when mustF (x1,x2) = f(x1) + f(x2)? This is another
example of how the SIPO concept narrows down the playing
field and sharpens the questions that need to be asked and
answered in any development work involving SI concepts.

Although it is desired that subsystem states be maintained
along a local Pareto optimal frontier at the same time system-
wide states are maintained on a global Pareto optimal frontier,
the possibility exists that this may not always be possible
depending upon how these objective functions and their re-
lationships are defined. Afterall, subsystem states affect the
system-wide objective functions which are also affected by
large numbers of other subsystems. Moreover, subsystems
do not behave independently. The resulting complexity is
similar in many ways to the complexity of cellular automata
(see below). The following section describes how can these
constraints can be captured in a mathematically useful way
that still reflects efficiency.

c) Efficient Tradeoffs of Efficiency Between Scales:
Sometimes the benefits to the individual entity must be traded
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off for the good of the entire group—e.g., soldiers must often
make the ultimate sacrifice to ensure the success of their unit
(or nation).10 This suggests the possibility that certain states
of neighboring subsystems maybe ‘incompatible’. That is, a
certain Pareto optimum in one subsystem may preclude a
particular Pareto optimum in another (similar to Ising spin
glass models—see the section below on Markov Random
Fields). Thus, it is conceivable that only certain combinations
of Pareto optima among neighboring subsystems may coexist
at any given time. If this is true, it may explain the notion of
fluctuations as Prigogine calls them [5] and the formation of
structures as an attribute of self-organization.

If such incompatibilities exists between and among neigh-
boring subsystems or between subsystems and system-wide
Pareto optima, then it must be the case that there is some trade-
off between the efficiency measures of individual subsystems
and/or the efficiency measure of the entire conglomeration of
entities. Some subsystems may have to sacrifice efficiency
in order for other subsystems to operate Pareto optimally.
Recall from the earlier discussion that the measure of Pareto
optima is a quantification of the efficiency of a system.
Thus, a mathematical way of characterizing a tradeoff of
efficiency between two subsystems or between two scales of
systems is to use their respective measures of efficiency to
define a Pareto optimal frontier based on them. In effect,
the scalar hypervolumes associated with Pareto optima on
different scales themselves become objective functions for
a Pareto optimal frontier! To the author’s knowledge, this
type of tradeoff has never been characterized or described in
this fashion, hence provides a novel way of characterizing
subsystem to system interactions. Figure 3 depicts such a
tradeoff curve where the Pareto optimal frontier is the bolded
part of the curve. Note that improvement on one scale comes
at the cost of worsening the hypervolume on the other scale.
Note also the concave form of the curve which is based on
the ideas that follow.11

d) Structures and Self-Organized Behavior: The descrip-
tions of self-organized behavior described earlier often entail
the notions of structures or patterns as the main charac-
terization of self-organization. The foregoing discussion on
efficient tradeoffs of efficiency measures provides another
way of describing how such structures and their precipitating
fluctuations arise.

First, some random configuration among the subsystem or
entities occurs. Next, the subsystems all seek their local Pareto
optimum. Finally, in the case where some subsystems cannot
attain a Pareto optimum in terms of local objectives because
of state incompatibilities among neighboring subsystems, these
subsystems attempt an efficient tradeoff of efficiency measures
as described above. These tradeoffs are between an estimate
of the measure associated with the global Pareto frontier
and an estimate of the measure associated with the local

10This type of behavior has also been observed in insect colonies where
soldier ants and worker bees sometimes sacrifice their lives for the good of
the entire colony. See [6, p.36-9].

11It should be borne in mind that the two axes depicted, one for subsystems
and the other for the entire system are not independent, but this simple curve
captures the essential idea of the efficient tradeoffs of efficiency measures.

Pareto frontier. Thus, as the subsystems and system evolves,
neighboring subsystems may evolve in a way guided by these
tradeoffs of efficiency measures. Thus, the state incompatibil-
ities ultimately give rise to structures as subsystems attempt
to operate on their local Pareto optimal frontier. The patterns
of states are therefore governed by their initial conditions,
the various state incompatibilities in terms of Pareto optima,
and the efficient tradeoffs of efficiency measures in the midst
of these subsystem state incompatibilities. The patterns or
structures observed in insect swarms can therefore possibly
be explained in these terms.

e) The ‘Graceful’ Degradation of Performance: The
foregoing discussion also suggests a general and mathemat-
ical way of describing the “graceful degradation” of system
performance. Such graceful degradation has been seen as
an important component in the management of large scale
systems such as the Internet [2, Ch.5]. Rather than suffering
catastrophic changes to a system, it may be possible for system
efficiency to be degraded in a more gradual manner. This is
because system efficiency can be measured using the Lebesgue
measure described earlier, hence the measures for different
scales can be traded off efficiently! This idea of efficient
tradeoffs of efficiency measures provides aquantifiable guide
of how best to achieve this sacrifice of efficiency on one scale
for improved efficiency on another scale. These types of issues
can arise in a variety of contexts.

Sub-system Efficiency
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Fig. 3. A tradeoff curve of different measures of efficiency.

For instance, during the operation of a complex system it
may happen that environmental changes, or changes in system
state results in a subsystem-system configuration depicted in
Figure 3. Here, thex−axis is an estimate of a particular sub-
system’s efficiency measure and they−axis is an estimate of
the global efficiency measure. The black dot corresponds to the
subsystem/system efficiency point under current environmental
conditions. These conditions suggest a tradeoff of efficiency
is possible where the system’s efficiency can be improved at
a cost of decreasing the subsystem efficiency,i.e., the black
dot is moved in the direction of the arrow.

Obviously, if the efficiency measures of enough subsystems
are degraded, it becomes increasingly difficult to compensate
for their degradation. Eventually, the entire system’s efficiency
measure will be reduced, but the actions of the subsystems in
establishing their movements along this Pareto optimal frontier
of these efficiency measures, provides for the most graceful
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degradation of efficiency—because the degradation occurs
efficiently! How this occurs poses an interesting and, needless
to say, difficult problem owing to the many subsystem interac-
tions with the system,i.e., the complexity problem and the fact
that these efficiency measures are not independent. Without
be able to quantify efficiency with this scalar hypervolume,
however, it would be impossible to address this problem of
graceful degradation in any mathematical way that provides
some guidance and direction for how to achieve this. This
approach of characterizing the subsystem to system efficiency
tradeoff therefore has many applications to both information
networking, understanding the economics and management of
such systems, as well as economics in general!

SIPO is a new way of articulating emergent behavior in
the context of systems operating under the imperatives of
natural selection. It provides a way to mathematically char-
acterize properties of systems on many scales and imposes
constraints on how the subsystems interact and functionally
affect global measures of performance. This makes imple-
mentation of efficient systems more realistic, provides some
underlying structure from which to investigate mathematical
forms for objective functions, has the appealing feature of
scale invariance and makes sense from an evolutionary point
of view. But can such properties arise in systems with limited
forms of communication and information processing? The
following section provides a clue, based on recent research,
that says it is indeed possible for Pareto optima to at least be
associated with limitations on the form of information.

2) Limited Signalling Systems and Pareto Optimality: The
nexus of operational efficiency and SI seems to stem from
how the swarms of entities,i.e., sub-systems, communicate
and interact with each other and their environment. If we are
to assume that biological systems have evolved over time to
operate efficiently, then the signalling systems used by social
insects must have some mathematical connection to multi-
objective optimization and the concept of Pareto optimality.
Moreover, such a signalling system must be simple in some
sense. The SI paradigm as indicated in the literature is based
on the use of very simple (and apparently low-cost) signalling
methods. Study of ant colonies for example, shows that
entire social systems operate efficiently using simple chemical
signalling systems based on pheromones. These pheromones
constitute a conceptually simple signalling system and provide
a great deal of useful information,e.g., temporal information
since the strength of the pheromone decays over time by the
process of evaporation ([6, p.43]) in addition to memory of
where the ants have been. By interpreting these chemical
signals and responding to them with simple behaviors, ants
perform complex functions efficiently.

The idea of using a simple signal to convey information
that leads to efficient behavior is somewhat remarkable and
the question therefore arises as to whether a simple signal
can even be associated with Pareto optima. The answer to
this question is of course that it is possible in the sense
that an entire set of Pareto optima can be measured using
a single scalar value, the hypervolume or Lebesgue measure
as described earlier (in the paragraph on the measure of Pareto
optima). Certainly, a single scalar quantity qualifies as perhaps

the simplest signal [33]. Thus, a strong connection between
Pareto optima and simple signals is possible. In effect, this
scalar may constitute a mathematical analogue of pheromone!
This scalar quantity not only provides the foundation for a
whole host of heuristic methods that can reveal Pareto optima
(or near Pareto optima, see [28], [29]12), but may also enable
the operational movement along a Pareto optimal frontier.

Pheromone may therefore be nature’s way of mapping an
entire set of Pareto optimal points to a single scalar quantity
and suggests mathematical constraints on the form of functions
that mimic pheromone. Thus, just as maximizing entropy
served as a guide in developing Metropolis equations of state
[24] that ultimately lead to SA, maximizing this Lebesgue
measure may serve as a guide in developing appropriate
signalling systems to mimic pheromoneand how other related
quantities should change over time or in relation to other
quantities. This is the heart and purpose of the dynamical
framework.

a) Swarm-based Solution Methods: One important con-
sideration in this discussion on Pareto optima, efficiency and
limited communications is how to tie it all together. How can
one effectuate solution methods involving simple signals that,
in effect, solve MOPs?

One way alluded to earlier is to use the SA algorithm. One
of its parallel forms, referred to ascybernetic optimization by
simulated annealing (COSA), uses scalars that are communi-
cated among processors to modulate the temperature control
parameter [34], [35]. These scalars provide a feedback con-
trol system that improves SAs performance. Like many ants
signalling each other with simple signals, parallel processors
running COSA communicate using simple signals in a way
that enhances their collective performance.

This form of parallel computation as many similarities
to other parallel forms such as Tabu Search and so-called
“random restart local search” methods [27]. These methods all
share a number of features in common with how swarms of
insects solve problemse.g., by exploring many different paths
simultaneously (see [6, p.55]). In particular, each processor in
a parallel system starts at some randomly selected point in
decision space and attempts to find the global optimum from
that point. With many such processors, the chances of finding
the global optimum in a reasonable amount of time increases.

b) Transformations and Movement Along the Pareto Op-
timal Frontier: An important aspect of multi-objective opti-
mization problems is that the vectors of decision variables
that produce the Pareto optima can be scattered throughout
the decision space (the domain) in an apparently random or
haphazard manner [28], [29]. This is due to the interplay
among the several objective functions—Pareto optima may lie
on the sides of hills rather than at their tops or bottoms (the
local minima or maxima). Thus, it is very difficult to determine
where these decision variable are in the decision space. Some
appropriate method to determine the Pareto optima and their
corresponding vectors of decision variables is necessary (see
[28]).

12Note that these results have also detailedefficient algorithms for calcu-
lating the scalar associated with this set function for any number of objective
functions.
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It bears emphasis that two Pareto optima that are close
to one another in objective function space may have their
underlying vectors of decision variables quite widely separated
and vice versa. Thus, assuming that a gradual change in
objective function space is desired, such as when there is a
gradual change in the relative utility of the different objective
functions, some method of moving from one vector of decision
variables to another such vector some distance away must be
devised. In other words, once the Pareto optima are identified,
some method of transforming one Pareto optimal decision
vector to another is required.

One approach for performing such a transformation is
through the use of feedforward neural networks [36, Ch.2].
Such networks can be trained so that a Pareto optimal deci-
sion vector in the input produces the desired Pareto optimal
decision vector at the output. Of course, a great deal of further
research and development in this context is necessary.

This dynamical framework based on the SIPO concept and
its relationships to emergent behavior, efficiency, and simple
signalling systems (as suggested by the Lebesgue scalar),
provide a framework that may enable novel approaches to SI
research and development in ways consistent with the first
principles described earlier. Together, the two main compo-
nents of the SI paradigm, self-organization as indicated by
movement along a Pareto optimal frontier and the minimal
signalling systems as indicated by the Lebesgue measure for
Pareto optima, provide a mathematical foundation from which
fundamental theories and principles of SI can be developed
because they are more precisely defined and characterized than
the ratherad hoc approaches currently in vogue that attempt
to capturesome aspect of SI.

To fully accomplish this potential however, requires some
way of applying these ideas to concrete and abstract problems,
i.e., test bed problems that facilitate the testing, experimenta-
tion and ultimately the application of these ideas. The prob-
lems used must have some potential for exhibiting emergent
phenomena and at the same time allow for modelling the
simple forms of interaction, the stigmergy, that is the hallmark
of SI. Theproblem framework, the last of the three formalism
components, provides these important elements for SI research
and development and is described in the next section.

C. The Problem Framework

An important aspect of the problem framework is that it
allows specific questions to be asked and problems explored.
It must be sufficiently general to not only capture the essential
elements of the phenomenon, but also offer some avenues on
which to implement the dynamical framework. It must also be
specific enough to allow useful and appropriate mathematical
tools to be brought to bear. The problem framework described
here attempts to achieve this by describing an abstract problem
type based on what is termed here asswarming finite state
machine (SFSMs) models.

1) Swarming Finite State Machine Models: The idea be-
hind SFSMs is that notwithstanding the limited capabilities
of swarms of entities, we should nonetheless provide some
way of flexibly describing their level of complexity. Afterall,

human societies present self-organized behavior and certainly
forms of ‘swarm intelligence’. The allusion to Adam’s Smith’s
“unseen hand” ([37]) and Alvin Toffler’s social code based on
society’s propensity for concentration, centralization, special-
ization, standardization, synchronization, and maximization
(see [38]) suggest that the central features of SI may be
ubiquitous. Are these not attributes of very complex forms of
swarm intelligence? What is needed then is a way to address
a continuum of complexity and swarm intelligence.

SFSMs allow us to do this in that each finite-state machine
(FSM) has a finite set of inputs, outputs and internal states that
provide memory, the potential capacity for learning (where
the transitions to states are affected by learning methods–see
[39]) and certainly the complexity that we hope to manipulate
and gain insight about. Moreover, the level of complexity can
be changed by simply changing the numbers of states that
comprise the SFSMs.

SFSMs form a type of cellular automata that when coupled
with appropriate transformation functions and objective func-
tions to reflect operation along a Pareto optimal frontier will
exhibit the type of self-organized behavior defined in Section
II-B. The states of each FSM will have some functional depen-
dence on neighboring FSMs and will be designed to stabilize
on efficient operating points. This may entail using genetic
algorithms (GAs) or involve neural networks to search the
space of transition functions or train on prescribed operating
points so as to induce the FSMs to operate on Pareto optimal
frontiers.

These types of simulations provide a real microcosm of
the SI world. It can effectively test whether natural selection
pressures are consonant with efficient operating points in
the manner described here. Fitness functions related to the
efficiency measures could be used to induce the SFSMs to
achieve this. It would indeed be interesting to see how these
SFSMs can then be designed (or evolved) to efficiently handle
tradeoffs of efficiency measures, a cornerstone of the SIPO
concepts described earlier.

The use of SFSMs allow for abstractions and, ultimately,
practical implementations. The level of complexity can be
controlled in the sense that the size of the FSMs, its number of
states, inputs and outputs, can be decided upona priori. The
state space of the SFSMs, how its transformation functions
are established and how they interact of course require further
research, but this problem framework and the other two for-
malisms mentioned earlier provide an important structure on
which real swarm intelligence can be studied and implemented
for real-world problems.

It is worth pointing out, however, that much of what has
been described, the properties and characteristics and such,
have features in common with many other areas of inquiry
in the sciences and engineering. The following areas describe
some of these features that offer some potentially useful tools
and ideas for developing SI systems.

D. Other Scientific/Engineering Tools

1) Group Theory: The structure of the emergent or self-
organized behavior in SI based on the meta-formalism,i.e.,
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movement along the Pareto optimal frontier, provides a num-
ber of methodologic and analytical advantages for exploring
the fundamentals of SI. The most significant aspect of this
structure is that it may permit the use ofgroup theory in
developing the fundamental theories of SI. Group theory
provides powerful mathematical tools as well as the distinct
possibility of developing novel insights.

This perspective requires a number of reasonable assump-
tions and conceptions. A basic conception is that we can model
each entityi in a swarm as asubsystem that exists in a number
of differentstates xi = (xi1, . . . , xin) defined byn parameters
corresponding to values associated with the local environment
as well as the status of the agents themselves. The social
insects, the ants for example, can be viewed as theagents
of change in that they modify the states of these subsystems.
The states of each subsystem also affect the states and agents
of neighboring subsystems, hence is conceptually similar to
cellular automata described below.

The actions of these agents of change can be modelled as
transformations on the states of each subsystem. Letx′ denote
the resulting state from the operation of a transformation
function Ti. Now Ti may, in effect, be a function of not just
the state of entityi, i.e., xi, but also the states of neighboring
subsystems. Thus,Ti(xi) = f(. . .xi−1,xi,xi+1 . . .) where
the states of neighboring subsystems are explicitly denoted
and f is a vector-valued function. Subsequent states, those
resulting from the action of the agents of change can be related
to the current states by

x′
i = f(. . .xi−1,xi,xi+1 . . .) = f̂(xi)

for somef̂ ∈ F̂i that is functionally dependent on the states of
the neighbors ofi. Because of our first and second formalisms,
these transformations must restrict the output states to the
set of Pareto optimaP or near Pareto optimaP ′, i.e., x′ ∈
S = P ∪ P ′. In effect, the neighboring subsystems select
transformations from a familyF̂i of transformations all of
which map one point inS onto another point inS. Assuming
the existence of identity and inverse transformations for each
such point, the set̂Fi constitutes asymmetric group ([19])
over the statesS.

2) Cellular Automata: Complexity theory, in particular
theories regardingcellular automata (CA) share a number
of features with SI (see [6, p. 245]). CAs are characterized
by a set ofcells usually arranged in some geometric pattern
(although this is not technically required) and connected to
other similar cells by some neighborhood rule. Each cell has
a finite number of states which are determined by the states
of its immediate neighbors. State transitions are defined by
simple rules, a central component of cellular automata, that
produce complex patterns often described as self-organized
[36], [3]. The distinctions between SI and CA as proposed
here involve the connection between the emergent behavior
and Pareto optimality. CAs usually do not involve objective
functionsper se. It is also worth noting that there is a deep
connection between CA and group theory [3, Ch. 3: Group
CA Characterization]. Chaudhuri,et al. [3] provide a number
of theoretical results on the connection between CA and cyclic
groups and other group properties.

It is also worth noting that the transformation functions
that determine how each cell evolves are usually very sim-
ple functions—somewhat analogous to the limited forms of
communication associated with SI and stigmergy. But in SI,
the relationships among the entities is dynamic owing to the
mobility of the agents of change. Entity relationships are
not fixed as in CAs. Notwithstanding this distinction, SFSMs
described above can model this mobility in a way consistent
with a CA paradigm by incorporating system states that model
changing environmental conditions.

3) Multi-Objective Optimization: One important aspect in
making a connection between self-organization and Pareto
optima is how these Pareto optima are identified. By creatively
utilizing the Lebesgue measure, SA and other heuristics can be
engineered to search for these operating points in a very direct
way, by maximizing this Lebesgue measure. This can be done
using the COSA concept which happens to incorporate simple
signalling systems as well. Many useful analogies to SI thus
become apparent. Swarms of insects are analogous to parallel
processors, simple signals in SI are analogous to the scalar
Lebesgue measure or some estimate of it, maximization of this
Lebesgue measure is analogous to movement along a Pareto
optimal frontier, hence a type of self-organized behavior. This
also suggests an interesting, and perhaps profound, unity of
concepts between and among the various paradigms described
here.

4) Game Theory: The dynamics of insect colonies involve
competition and cooperation among them and so unavoidably
involve aspects of game theory. The dynamics of competi-
tion and cooperation constitute the major components of the
more interesting aspects of game theory [40]. Game theoretic
concepts such as the famousNash Equilibrium are really
statements about Pareto optimality and how interacting entities
achieve the greatest utility in a changing environment of
competition and cooperation [41, p.193,339].

5) Markov Random Fields: The theory ofMarkov Random
Fields (MRFs) shares a great deal in common with that of
Boltzmann Machines, SA and CA. As alluded to earlier in the
paragraphs onEfficient Tradeoffs . . . ), some subsystem states
may not be allowed to coexist with neighboring subsystem
states. MRFs can model this type of behavior and have the
desirable Markov property in terms of spatial attributes. This
provides a mathematical structure to these problems. A large
body of useful theoretical results on MRFs exists (see.g., [42])
and may be quite useful in addressing some of the issues in
SI and how efficient tradeoffs of efficiency measures may be
analyzed.

IV. CONCLUSION

The growth of communications and networked systems
imposes on a us a need to explore new and imaginative
ways to address the expected problems in managing these
systems. Effectively utilizing the SI paradigm requires some
frameworks on which to first build the relevant theory and then
guide research toward practical implementations. This article
examined three aspects of a meta-formalism that attempt to
provide this necessary structure to further research into SI and
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develop a more rigorous and mathematically sound theory for
its analysis. The three elements of the meta-formalism involve
1) a set of first principles based on the laws of nature, 2)
a dynamical framework, and 3) a problem framework. The
relevant laws of nature are those associated with the theory
of evolution and the effects of natural selection. The theory
of evolution provides the justification for describing efficient
behavior in social insect colonies. This efficient behavior can
be mathematically characterized and associated with Pareto
optima. Thus, the self-organized behavior often associated
with SI can be given a more mathematical treatment when
described in terms of operating points that lie along a Pareto
optimal frontier. Operation along this frontier also provides a
way of mathematically describing adaptive behavior, one of the
hallmarks of SI. These notions of efficiency and adaptability
which are implications of the first principles can be given
effect as the underlying concepts behind the second formalism
component—the dynamical framework.

The dynamical framework was described in terms of scale
invariant Pareto optimality (SIPO), a property that requires that
the behavior of entities within a swarm must be consistent with
efficient behavior and tradeoffs of efficiency on many scales.
SIPO thus provides a valuable set of conceptual constraints
that focusses the research efforts, provides ideas that can be
mathematically formalized and expressed, and features some
of the mathematical elegance ofself-similarity so often found
in natural systems.

Finally, the problem framework provides a recipe for ab-
stracting the problem and, in effect, provides the modelling
clay with which to mold SI research so that it is consistent with
the first two formalism components. The problem framework
employs the use of swarming finite state machines models
which provide a way to model a continuum of complexity
apparent in the SI exhibited by different species.

In conclusion, it is the author’s hope that this meta-
formalism and the ideas in this article will help facilitate
research and development using SI. The resulting theories have
potential for application in many areas of inquiry involving
complex systems. The goal of making these increasingly
complex systems more efficient, scalable and autonomous will
help to ensure their effectiveness well into the future.
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